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Abstract— Rehabilitation robots are often combined with 

serious games that motivate patients and keep them exercising 

at high intensities. A promising type of game are competitive 

rehabilitation games, but few difficulty adaptation algorithms 

have been presented for them. This paper thus presents the 

adaptation of difficulty in a competitive arm rehabilitation 

game based on two physiological signals: respiration and 

electromyography of the posterior deltoid. It consists of three 

smaller studies: an open-loop respiration study, a closed-loop 

respiration study (where a controller attempts to maintain 

respiration rate at preset levels), and a closed-loop 

electromyogram study (where a controller attempts to keep the 

electromyogram at preset levels). The studies control two 

difficulty parameters based on the physiological responses of 

one of the two exercising participants, though the ultimate goal 

is to control the physiological responses of both participants. 

Furthermore, all three studies are done with unimpaired 

participants. The closed-loop controllers achieved high 

correlation coefficients between desired and measured levels of 

respiration rate (r = 0.83) and electromyogram (r = 0.89), 

demonstrating that it is possible to control the physiological 

responses of unimpaired participants in a competitive arm 

rehabilitation game, thus controlling their level of workload 

and exercise intensity. In the future, the proposed method will 

be tested with patients undergoing rehabilitation. 

 

I. INTRODUCTION 

Rehabilitation robots are frequently combined with game-

like virtual environments meant to increase patient 

motivation [1]. One type of such virtual environments are 

interpersonal rehabilitation games, which motivate patients 

by allowing them to interact with another person: another 

patient, a therapist, or an unimpaired friend or relative. First 

proposed by Flores et al. [2] and Johnson et al. [3], 

interpersonal games have experienced a resurgence in recent 

years, with several studies demonstrating high motivation 

and exercise intensity in single-session evaluations [4,5,6,7]. 

However, to date, no multisession evaluations have been 

performed. 

Before interpersonal rehabilitation games can be used in 

long-term studies, they must be equipped with difficulty 

adaptation algorithms that optimize exercise intensity by 
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keeping the game difficulty at a level appropriate for the 

patient. Such algorithms are common in rehabilitation games 

played by a single patient [8, 9], and several algorithms have 

been proposed for interpersonal games [10,11], but 

practically no evaluations have been performed with actual 

human subjects in interpersonal games. 

In this paper, we propose two methods of adapting the 

difficulty of a competitive arm rehabilitation game based on 

the respiration and electromyogram (EMG) of the two 

players. Both respiration [12] and EMG of skeletal muscles 

[13] have been widely used to assess human workload in 

many studies. By controlling EMG and respiration rate 

during a rehabilitation exercise, we would thus be able to 

control patient workload, [14], similarly to what has 

previously been done for rehabilitation games played by a 

single patient [15]. Respiration was selected since it is a 

common measure of overall metabolic workload while EMG 

was selected since it reacts much more quickly than 

respiration and reacts specifically to work done with the 

selected arm muscle.  

Our ultimate goal is to adapt the difficulty of a 

competitive arm rehabilitation game based on physiological 

signals of both participants. However, as a first step, this 

paper is limited to measuring the EMG or respiration rate 

(RR) of one player and adapting game difficulty 

accordingly. The paper consists of three smaller studies. The 

first study conducts an open-loop evaluation of the effects of 

game difficulty on respiration. The second study then uses 

data from the first study to implement and test a closed-loop 

controller that adapts game difficulty in real time to keep 

respiration at a desired level. Finally, the third study presents 

a closed-loop controller that adapts game difficulty to keep 

EMG at a desired level.  

   

II. METHODOLOGY 

This section is divided into four parts as follows. Part A 

describes the robot and competitive arm rehabilitation game 

used for all experiments in this paper. Part B presents the 

open-loop experiment used as a basis for control of 

respiration while part C presents the closed-loop experiment 

on control of respiration during the competitive 

rehabilitation game. Finally, part D demonstrates the closed-

loop control of EMG.   
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A. Robot and competitive game 

The competitive arm rehabilitation game (Figure 1) was 
taken from a previous study on interpersonal arm 
rehabilitation games [4]. It is an air hockey game consisting 
on two paddles and a puck on a board. The puck constantly 
moves across the board. Each player controls one paddle and 
must move it left or right to block the puck and keep it from 
reaching that player’s goal. If the puck is deflected by a 
paddle, it bounces off it and moves toward the opposite side 
of the board. If the puck hits the player’s goal, the other 
player scores a point and the puck is instantly moved to the 
middle of the board, where it remains stationary for a second 
before moving in a random direction. 

The game is played by two players using a large 
projection screen (Figure 2) and a 17-inch monitor. One uses 
a Haptic Master (Moog FCS, Netherlands – Figure 2) haptic 
robot, and moves the robot’s end-effector left and right to 
move his or her paddle. The other player uses a standard 
commercial joystick, and tilts it left and right to move the 
other paddle. Such a combination of rehabilitation device and 
joystick was previously used in our research [7] and is 
appropriate for an unimpaired and impaired person exercising 
together, though a final implementation with two patients 
would ideally use two robots.  

The game has two difficulty parameters: the speed with 
which the puck moves across the screen (from very slow to 
very fast) and the resistance with which the Haptic Master 
resists the player’s movements (from very low to very high).  
Notably, the speed parameter affects both participants 
directly while the resistance only affects one player. In the 
future, using two haptic robots would allow us to vary the 
resistance parameter independently for each player. 

B. First study: Open-loop study of respiration rate 

Before designing a closed-loop controller, we first 
evaluated how different difficulty settings affect respiration 
rate in the competitive game. Twelve healthy university 
students (23.6 ± 4.2 years old, 2 females) participated in the 
 

Figure 1. The air hockey competitive arm rehabilitation game. It consists 
of a puck, two paddles that are controlled by the haptic robot and joystick, 

and a score board. 

Figure 2. Hardware setup. A combination of haptic robot and projection 

screen, used by the first participant.  A 17-inch monitor and a commercial 

joystick are used by the second participant. 

 

open-loop study together with self-selected friends (who 
played against the participants, but did not have their RR 
measured). Participants were relaxed at the beginning of the 
experiment. Figure 3 shows the protocol of this study, which 
starts with a 3-minute baseline recording of RR using a 
thermistor-based sensor (Respiration airflow sensor, g.tec, 
Austria) placed in front of the nose and mouth. The main part 
of study then consists of four test periods separated by1-
minute rest periods to “wash out” the effects of the previous 
test.  

The four test periods differ according to the levels of the 
game’s two difficulty parameters: puck speed and robot 
resistance. In this study, each parameter has two possible 
levels (low and high), leading to four possible combinations. 
The test period with low puck speed and low robot resistance 
can be assumed to be the least demanding test and should 
thus result in the lowest increase in respiration rate while the 
period with high puck speed and high resistance should result 
in the highest increase in respiration rate. To validate that the 
difficulty changes indeed affected participant workload, the 
NASA-TLX questionnaire [16] was also filled out after each 
test period. It assesses six aspects of workload: mental 
demand, physical demand, temporal demand, performance, 
effort and frustration. 

 The four tests were conducted in order to establish each 
difficulty parameter’s effect on respiration rate. This served 
as the basis for the closed-loop study in the next section.  

Figure 3. Protocol of the first, open-loop study on respiration. 

All RR values obtained from 4 tests are normalized by 
subtracting the mean RR value of baseline period. The 
normalized data are presented in next section to indicate 
different levels of RR during different difficulty levels.  

C. Second study: Closed-loop control of respiration rate 

The closed-loop respiration rate controller was designed 
based on the results of the previous study, which identified 
(as described in more detail later) the amplitude of changes in 
respiration rate that should be expected in young, unimpaired 
participants. In the most difficult test (high puck speed, high 
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resistance), RR showed, on average, an increase of 6 breaths 
per minute compared to baseline values (∆RRMAX). Thus, that 
is the maximum we can expect our controller to be able to 
achieve. 

The closed-loop study was conducted with nine healthy 
participants (age 26.44 ± 3.04, 2 females) and their self-
selected friends (who played against the participants, but their 
RR was not measured), none of which had participated in the 
open-loop study. It began with a 3-minute baseline period, 
during which the participant’s baseline RR (RRBASE) was 
calculated over the entire period. After the baseline period, 
there were three 3-minute test periods. During each test 
period, the closed-loop respiration rate controller aimed to 
maintain the participant’s RR at a different reference level: 

- Reference 1:  RRBASE + 0.5 ∆RRMAX 

- Reference 2:  RRBASE + 0.8 ∆RRMAX 

- Reference 3:  RRBASE + 0.3 ∆RRMAX 

Figure 4 shows the protocol of this study. There were no 
breaks between the four periods. Every 15 seconds, the 
controller calculated the mean RR over the last 15 second-
period and compared it to the reference value, then changed 
the puck speed and robot resistance in order to reduce the 
difference between actual and reference values of RR.  

Figure 4. Study protocol for closed-loop control of respiration rate. 

Control of difficulty is done using a few simple 
proportional rules. Each interval, the difference between 
measured and reference values of RR is calculated. The puck 
speed is then increased by 0.1 times the difference between 
measured and reference RR values; simultaneously, the robot 
resistance is increased by 5 times the difference between 
measured and reference RR values. As game speed can be 
adjusted between 0 and 1 while robot resistance can be 
adjusted between 0 and 50, a difference of 1 cycles/min 
between desired and actual RR results in a 10% change in 
speed and resistance. Thus, if the measured RR is lower than 
the reference value, both puck speed and robot resistance are 
increased (or vice versa).   

D. Third study: Closed-loop control of EMG 

Unlike respiration, closed-loop control of arm EMG was 
done in a single study, without first conducting open-loop 
experiments. Five healthy participants (27.3 ± 4.2 years old, 
all male) and their self-selected friends, none of which had 
participated in the first two studies, were recruited. The EMG 
activity of their posterior deltoid muscle was recorded using a 
g.USBamp biosignal amplifier (g.tec Medical Engineering 
GmbH, Austria). The posterior deltoid was selected as it is 
the muscle that exhibited the strongest contractions during 
the left-right Haptic Master movements required to play the 
competitive game. Its EMG was recorded with a combination 
of four leads (Figure 6) – a ground lead on the spine, a 
reference lead on the acromion process, and two leads on the 
posterior deltoid (with a 20-millimeter distance between the 
two). The mean absolute (MABS) value of EMG signal 
amplitude was used as an indicator of muscle activity level.  

Figure 5 presents the protocol of the study for closed-loop 
control of EMG. It begins with two 1-minute 
individualization periods – one with very low and one with 
very high task demand (TD). The low-TD period involves a 
very low puck speed and robot resistance while the high-TD 
period involves very high puck speed and robot resistance. 
These two periods provide us with each participant’s 
minimum and maximum EMG MABS values (MABSMIN and 
MABSMAX) that are realistically achievable in the 
competitive arm rehabilitation game. The difference in 
MABS values between these two individualization periods 
was calculated as ΔMABS. 

Following the two 1-minute individualization periods, 
there were three 4-minute test periods. During each test 
period, the closed-loop EMG controller aimed to maintain the 
participant’s EMG MABS value at a different reference value 
(similarly to the closed-loop respiration study): 

- Reference 1:  MABSMIN + 0.45 ΔMABS 

- Reference 2:  MABSMIN + 0.7 ΔMABS 

- Reference 3:  MABSMIN + 0.2 ΔMABS 

As in the closed-loop respiration study, the closed-loop 
controller aimed to reduce the difference between reference 
and actual values of MABS by adjusting the puck speed and 
robot resistance. To keep the changes smooth, each 4-minute 
period was divided into twelve 20-second periods. At the end 
of each period, the mean MABS value of the EMG was 
calculated over the last 20 seconds and compared to the 
reference value. 

Figure 5. Protocol of EMG closed-loop study. Starts with low TD followed 

by high TD and three test conditions. 

The decision of how to adapt game difficulty was made using 
a multiple linear regression model. Every 20-second interval 
of the test results in a vector of EMG MABS, speed and 
resistance values. Each vector forms a point in 3-dimensional 
(3D) solution space. By having at least three points in the 
solution space, a plane can be fitted using a multiple linear 
regression model. The model can be used to estimate 
 

Figure 6. The placement of leads for recording EMG of posterior deltoid. 
The ground, references and main leads are shown by black, red and green 

colors, respectively. 
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the values of the two game parameters that will result in 
desired levels of EMG MABS. Equation (1) shows the 
function representing the relationship between speed (x), 
resistance (y), EMG MABS (z) and a constant (c). By taking 
speed and resistance parameters as inputs, the best regression 
model (best plane) can be fitted to the points in 3D solution 
space. This can be done by using Equation (2) and 
calculating ‘a’, ‘b’ and ‘c’ coefficients. After each 20-second 
interval, Equation 1 is then used to calculate the game 
parameters (speed and resistance) for the next interval based 
on desired EMG MABS values. Furthermore, after each 20-
second interval, coefficients ‘a’, ‘b’ and ‘c’ are recalculated 
by adding the new data vector (from the last interval) to the 
training dataset. This results in a slight change to the 
coefficients after each interval and results in gradual 
individualization of the controller.   

 

III. RESULTS 

A. Open-loop study of respiration rate 

Table 1 presents the mean and standard deviation for six 
dimensions of NASA-TLX and mean RR during four 
different tests. An increase in all aspects of workload and a 
decrease in workload can be seen as a result of difficulty 
changes. Furthermore, mean RR increases when difficulty 
increases.  

Table 2 shows the results of the repeated-measures 
analysis of variance (RM-ANOVA) for the different 
workload aspects of the NASA-TLX and different puck 
speed and robot resistance levels. Puck speed affects all six 
NASA-TLX dimensions while robot resistance primarily 
affects physical aspects. Therefore, the selected competitive 
rehabilitation game can induce different workload levels in 
players. 

TABLE 1. MEAN AND STANDARD DEVIATION OF SIX ASPECTS OF NASA-TLX 

(EACH ASPECT IS IN THE RANGE OF 0-20) AND MEAN RR (NORMALIZED BY 

SUBTRACTING BASELINE VALUE) FOR 4 DIFFERENT TESTS.  

 
Slow & 

without 

resistance 

Slow & 

with 

resistance 

Fast & 

without 

resistance 

Fast & 

with 

resistance 

Mental 

demand 
3.4 ± 2.6 3.8 ± 3.4 7.6 ± 4.3 7.8 ± 3.4 

Physical 

demand 
3.4 ± 2.9 7 ± 6.2 6.5 ± 5.6 10.5 ± 5.5 

Temporal 

demands 
2.8 ± 2.6 4.3 ± 5.1 10.4 ± 4.6 12.3 ± 5.3 

Performance 16.5 ± 3.0 16.3 ± 3.4 11.6 ± 5.7 12.7 ± 4.9 

Effort 3.1 ± 3.2 6.7 ± 6.1 8.4 ± 4.1 11.4 ± 5.3 

Frustration 1.9 ± 1.4 1.8 ± 1 5.6 ± 4.4 4.5 ± 4.1 

Mean RR 

(cycles/min) 
4.6 ± 3.6 4.5 ± 4.4 7.5 ± 5.6 7.5 ± 5.2 

TABLE 2. SIGNIFICANT DIFFERENCES IN WORKLOAD ASPECTS (MEASURED 

WITH THE NASA-TLX) BETWEEN THE TWO LEVELS OF PUCK SPEED AND 

ROBOT RESISTANCE. PRESENTED AS P-VALUE AND EFFECT SIZE 

(CALCULATED AS η2) 

 Speed Resistance 

Mental p < 0.001, η2 = 0.74 n.s. 

Physical p < 0.001, η2 = 0.76 p < 0.001, η 2 = 0.62 

Temporal p < 0.001, η 2 = 0.82 p = 0.018, η 2 = 0.41 

Performance p = 0.005, η 2 = 0.53 n.s. 

Effort p < 0.001, η 2 = 0.78 p = 0.010, η 2 = 0.47 

Frustration p = 0.003, η 2 = 0.56 n.s. 

 

The RM-ANOVA is also exploited for assessing the 
effects of puck speed and robot resistance on mean RR (the 
physiological indicator of game difficulty). Puck speed 
shows P-value less than 0.001 and the effect size (calculated 
as η2) is equal 0.72 which indicate significant effect on mean 
RR. Although resistance has effect on mean RR but the P-
value is not less than 0.01 (the considered confidence level). 
Taking the results of Tables 2 and the significant effect of 
speed on mean RR, we can conclude that puck speed and 
robot resistance affect player workload. Thus, it should be 
possible to control player workload via closed-loop control 
of RR.  

B. Closed-loop study of respiration rate 

In the closed-loop study of respiration rate, game 
difficulty is adapted each 15 seconds over nine minutes of 
the test, resulting in 36 intervals (15 seconds each). Figure 7 
presents the mean measured RR across participants as well 
as the desired reference pattern. The Pearson correlation 
coefficient between the measured RR and the preset 
reference is 0.833 while the Root mean square (RMS) of 
differences between them is 12.90 percent of maximum RR 
difference from baseline, showing that the proposed 
approach is capable of adapting difficulty to maintain 
respiration rate at desired levels.  

C. Closed-loop study of electromyography  

Figure 8 shows the average of EMG MABS across 
participants. In closed-loop control of EMG, game difficulty 

 

Figure 7. Respiration rate (normalized by subtracting the baseline value). 

It is averaged across all participants. Each dot represents a 15-second 

interval in the closed-loop control study. The RR mean value of the 3-

minute baseline period is represented by a single point at zero. 

860



  

  
Figure 8. Mean absolute value of electromyogram activity during the test. 

The gray line represents the preset reference and black line is the measured 
electromyogram signal. The test consists of two 1-minute individualization 

periods followed by three 4-minute test periods with different references. 

Results are averaged across all participants. 

 

is adapted each 20 seconds over twelve minutes of the test, 
resulting in 42 intervals. The Pearson correlation coefficient 
between reference and measured EMG values is 0.896 while 
the RMS of differences between them is 9.22 µV, indicating 
that it is possible to control EMG by adapting game 
difficulty in real time. The correlation coefficient may be 
higher for EMG than for respiration since EMG reacts more 
quickly to changes in task difficulty. 

 

IV. DISCUSSION  

The obtained results show that it is possible to control a 

player’s respiration rate or EMG during a competitive arm 

rehabilitation game with a reasonable accuracy by adapting 

game difficulty. As both respiration rate and EMG are 

indicators of workload, this means that it should be possible 

to control patient workload during a competitive arm 

rehabilitation exercise using the proposed methods.  

The presented results are, of course, preliminary: in a final 

implementation, we would aim to control the respiration 

and/or EMG of two patients while they exercise in the 

competitive arm rehabilitation game; in the current 

implementation, we only control the respiration or EMG of a 

single unimpaired person while he or she exercises together 

with a second unimpaired person. Nonetheless, our work 

lays the foundation for real-time control of physiological 

signals in competitive and cooperative rehabilitation 

exercises.  

Aside from expanding the work to actual patients and to 

controlling the physiological responses of both players, 

multiple other improvements could be made to the system. 

For example, other physiological signals connected to 

workload and engagement could be added to make the 

controllers more robust and accurate, and additional game 

difficulty parameters could be introduced to the model. By 

analyzing the effect of each parameter in the game, we 

could, for example, control different aspects of the patient’s 

workload (e.g. physical and mental). Finally, patient-specific 

factors such as familiarity with the game, mood, fatigue, and 

personality could be taken into account to create patient-

tailored controllers. However, we must also be careful not to 

make the model overly complex – given low patient sample 

sizes generally available in rehabilitation robotics research, 

we must carefully balance increased accuracy with the risk 

of overfitting the control model.  

V. CONCLUSION 

 We present two preliminary prototypes of control 

systems that adapt the difficulty of a competitive arm 

rehabilitation game in order to keep the player’s respiration 

rate or arm EMG at a desired level. The controllers achieved 

a high correlation coefficient between desired and actual 

respiration rate and EMG, demonstrating that such control 

can be done with good accuracy.  

As the next steps, the demonstrated controllers need to be 

tested with actual patients as well as expanded to take both 

players’ physiological responses into account. In the long 

term, however, they have the potential to be used to adapt 

the difficulty of competitive and cooperative rehabilitation 

exercises, keeping patients at an appropriate level of 

engagement that allows them to exercise intensely for a good 

amount of time without becoming tired, bored or frustrated. 

They could also be transferred to other fields of human-

machine interaction, keeping the workload of computer 

users at an appropriate level that maximizes performance. 
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