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Abstract—Transforming the field of portable noninvasive 

brain monitoring from cumbersome, inconvenient and obtrusive 

sensing systems into new ergonomic, user-friendly solutions 

requires solid evidence from practice.  Multi-modal sensing of 

brain signals digitized at the sensor level, minimization of noise 

using active sensors and shielding, and flexible and reconfigurable 

dry electrodes are essential components of such solutions. 

Usefulness of these basic ingredients has been demonstrated in 

several research publications, however deficiencies and prospects 

of novel brain sensing systems and their components over 

traditional gel-based systems and their clinical relevance have 

rarely been discussed. Here, we present the state-of-the-art and 

illustrate some of the latest developments in imec’s wearable brain 

sensing systems and identify latest research trends and needs. 

Special emphasis is given to recent technological developments 

that enable multi-modal wearable brain sensing by combining 

EEG with functional near infrared spectroscopy and electrical 

impedance tomography. 

Keywords—brain sensing, electroencephalography, EEG, 

wearables, noninvasive, dry electrodes, active sensors, functional 
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I. INTRODUCTION 

Noninvasive and portable brain monitoring solution exist for 
half a century. The first units were designed for assessing 
conditions of epilepsy patients by performing ambulatory 
electroencephalography (EEG) monitoring [1]. Since then not 
much has changed in the systems used to trace user’s brain 
activity. Electrodes with conductive gel are applied by a 
technician at the prescribed locations at the clinic and the signal 
quality is verified. A head cap is provided to keep the electrodes 
in place. Long wires were carrying the signals from a user head 
to the main electronic unit that user had to wear around his/her 
waist. All the electronics was integrated in this unit; hence it was 
amplifying the signal and recording it on the most suitable 
recording medium at the time.  

Although recording units got smaller over time, it was only 
recently that truly wearable brain monitoring systems appeared 
on the market, e.g., g.Nautilus (g.Tec) [2], Smarting 
(mBrainTrain) [3], and Enobio (Neuroelectrics) [4]. Advances 
in miniaturization of electronic components and chips were the 
main driver towards this change. However, cumbersome and 
inconvenient setup and usage of gel electrode, considered as 
gold standard in clinical practice for EEG acquisition, are still 
preventing wider use of wearable brain monitoring solutions. 
We witness the latest revolution in wearable brain monitoring 
that could change the landscape of utilizing brain monitoring 
solution for lifestyle and clinical applications – the use of dry 

electrodes. Although dry electrode sensing comes with many 
drawbacks in terms of increased susceptibility to noise and 
fragility of the interface, it comes with many potential benefits 
such as increased user comfort, short setup times, and no need 
for expert assistance. As such, it enables the use of brain 
monitoring solutions at one’s own pace and outside controlled 
clinical and laboratory environments.  

The first systems that used dry electrodes for monitoring 
electrical activity of the brain appeared a decade ago [5]-[7]. 
Those were research prototypes, demonstrating the potential of 
dry EEG monitoring. It was not long after that the first 
commercial devices appeared on the market, such as NeuroSky 
[8] and Quasar [9]. Those devices paved the way for many new 
dry electrode solutions appearing recently at the market, mainly 
used to capture the status of human brain in daily life situations 
or when humans are put in specific environments [10][11].  

EEG has limitations in terms of spatial resolution, especially 
if a limited number of electrodes is used, and capturing activity 
of deeper brain regions is a must. To complement monitoring of 
the electrical activity of the brain, blood oxygenation monitoring 
through functional near infrared spectroscopy (fNIRS) has 
shown to provide clinically relevant information [12]. Given the 
potential of miniaturization of fNIRS systems, several wearable 
integrated EEG and fNIRS systems for monitoring human brain 
activity in a convenient way have recently appeared [13][14]. 
One of the most recent developments introduces also the 
possibility to capture bioimpedance information, which enables 
electrical impedance tomography (EIT) monitoring [15].  

Combining electrical and optical sensing has the potential to 
improve the performance of EEG based brain-computer 
interface (BCI) systems in terms of detection accuracy [16]. 
Also, it facilitates reliable prediction of drivers’ fatigue level 
[17]. Recently, the benefits of simultaneous EEG and fNIRS 
monitoring in clinical applications have been demonstrated on 
assessing neurovascular coupling in infants [18]. Further 
examples of use cases are missing mainly due to the 
unavailability of such multi-modal monitoring solutions, 
especially the ones including EIT. It is a matter of time before 
we will witness more success stories utilizing such convenient, 
multi-modal, wearable brain monitoring technology.   

In this paper, we discuss the state-of-the-art in wearable dry 
electrode EEG sensing. We introduce flexible dry EEG 
electrodes and EEG sensors and discuss the main aspects of 
wearable dry EEG sensing technology. We also provide more 
details on the technological solutions for multi-modal brain 
activity monitoring. In addition, we focus on identifying recent 
developments and future trends. 
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II. DRY EEG ELECTRODES 

A. Different types of dry electrodes 

The first dry (contact) electrodes were rigid, made of stainless 
steel, silver/silver-chloride (Ag/AgCl), or gold-plated material 
[19]. Flat electrodes were used for head regions which are not 
covered with hair, while a rigid metal pin structure was used for 
hairy sites. Among those, Ag/AgCl electrodes have shown the 
best performance and are used in most solutions [19]. As a 
certain amount of flexibility and comfort are required, spring-
like mechanisms were introduced, either within the pins or on 
top of the electrodes.   

Recently, to enable daily life applications and avoid injury risks, 
several wearable EEG monitoring solutions have replaced metal 
electrodes with conductive polymer electrodes containing pins, 
made by mixing carbon content into polymers [20][21]. 
Typically, tips of the pins on those electrodes are coated with 
Ag/AgCl to improve contact properties, as discussed in the next 
section. These electrodes (pins) are more flexible than their 
metal counterparts, however, when higher carbon content is 
used they can be quite rigid. Given that higher carbon content is 
required for reducing contact impedance, there is an intrinsic 
flexibility/conductivity tradeoff in polymer electrodes. The 
performance of these electrodes is still worse than conductive 
gel based ones in terms of contact impedance, noise and 
stability, but it comes close to dry rigid Ag/AgCl electrodes. 
This is illustrated in Fig. 1 that shows the correlation and 
coherence in 1-40 Hz frequency range of two types of coated 
polymer electrodes and an uncoated one to the gel electrodes, 
mounted 2 cm apart from each other.  

Fig. 1. Correlation and coherence of EEG signals measured using a reference 

conductive gel electrode and different test electrodes with pins placed 2cm 
apart: uncoated polymer, Ag/AgCl coated polymer (with low and high carbon 

content), rigid Ag/AgCl electrode and conductive gel electrode. 

Although Ag/AgCl coated conductive polymer electrodes are in 
use in commercially available system (e.g., Cognionics [22]), 
their usability is not extensively evaluated. Apart from the 
benefits these conductive polymer electrodes bring in terms of 
user comfort and ease of integration, they come with a few 
drawbacks. In case large carbon content is used, electrodes are 
unlikely to follow the curvature of the head resulting in poor 
electrode-skin contact and user discomfort. In case low carbon 
content is used, penetrating the hair and reaching the scalp 
becomes difficult. Furthermore, the coating on the tips of the 
pins can be damaged or completely removed due to the usage. 
Finally, the processes at the skin-electrode interface, both 
chemical and electrical, are not completely characterized. 

B. Dry electrode to skin interface 

In the absence of electrolyte, the transition of ionic tissue 
currents to electrode electron currents is more complex in dry 
electrodes. It results in more dominant capacitive components 
and overall increase of impedance to often more than 100 kΩ (at 
10 Hz) [23]. The traditional gel electrode to skin electrical model 
shown in Fig. 2a cannot accurately describe dry electrode-tissue 
impedance (ETI). Most importantly, the electrode-electrolyte 
(Ehc, Cee and Ree) and electrolyte-skin interface (Ese, Cse and Rse) 
does not exist. 

Fig. 2. Equivalent electrical circuits for: a) conductive gel electrode-skin 

interface and b) dry electrode-skin contact interface. Ehc is half cell potential, 
Cee and Ree are electrode-electrolyte capacitance and resistance, Cse and Rse are 

electrolyte-skin interface, CPEse is dry electrode-skin constant phase element 

(capacitive component), Zw is dry electrode-skin Wartburg element, and Rt is 

skin tissue resistance. 

The most suitable model derived for dry ETI is a result of a 
limited analysis performed at imec. It includes a Warburg 
element (Zw) that models the ion diffusion at the interface, and 
constant phase element (CPEse) that models the double layer at 
the contact interface, as illustrated in Fig. 2b. This model has 
only been studied and demonstrated as accurate in static 
conditions and when using metal electrodes with rigid metal pins 
on the surface of the skin.  

Fig. 3. Evolution of dry electrode to skin contact impedance over time. Each 

line represents impedance magnitude measured in the 1-300 Hz frequency 

range at a different time instance starting from the moment measurement 

electrodes are mounted on the head. 

Furthermore, these measurements were done after the 
interface stabilization process took place. In the first minute(s), 
while the interface is not at equilibrium, changes are taking place 
at this interface. These can be seen when inspecting the 
evolution of the impedance over time, as shown in Fig. 3. In case 
of such dry electrodes, it takes more than 20 minutes for the 
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impedance values to stabilize. In addition to the long impedance 
stabilization time, large drifts at low frequency are observed in 
the first few minutes when EEG measurements are performed 
with dry electrodes. Furthermore, applying different forces on 
the electrode introduces additional variations at the interface as 
electrodes can glide over the skin surface and produce various 
deformations of the skin beneath the electrodes [24]. Those 
forces disturb the interface equilibrium state and are difficult to 
describe and model. 

When using electrodes with pins, each pin forms a separate 
interface to the skin which can have different contact properties. 
This assumes a different force is applied on each pin, as well as 
different contact area is formed, including the potential impact 
of hair. Hence, a model having a set of parallel interfaces shown 
in Fig. 2b would be a more realistic interpretation of the ETI 
model. So far, only limited exploration has been done on 
polymer electrodes, focusing mainly at treating the interface of 
a number of pins as a single interface [21]-[25]. Although, the 
results of such studies are useful for the application and selection 
of the best electrode configuration, they are not helpful in 
understanding the interface under static and dynamic conditions. 
Complemented by large differences in skin properties of the 
general population, due to skin moisture, thickness of different 
skin layers, elasticity of the skin, etc., generating a suitable 
unified model that would capture dry electrode skin interface in 
both static and dynamic conditions remains a big challenge.  

C. Sensor types and layout 

Dry electrodes for EEG monitoring have been mainly designed 
as electrodes with pins. However, in areas not covered with hair, 
flat coated conductive polymer electrodes would be a better 
solution in terms of user comfort, contact quality, and system 
design. Limited exploration has been done on the usage of such 
electrodes. In our initial evaluation, the typical impedance level 
of such electrodes was similar to the rigid Ag/AgCl electrodes 
with pins. The mean values across the ten participants using the 
EEG system with different dry electrodes integrated in a headset 
described in [26] during the 30-minute recording was: 6.5 kΩ 
for reference gel electrodes, 50.5 kΩ for flat Ag/AgCl coated 
conductive polymer electrodes, 58 kΩ for rigid Ag/AgCl 
electrodes with pins and 62.2 kΩ for Ag/AgCl coated 
conductive polymer electrodes with pins. 

Apart from flat and single multi-pin electrodes, different 
electrode embodiments can be implemented using such flexible 
flat or pin electrode structures. Such a setup can be used to 
capture the Laplacian derivative instead of referential signal by 
using concentric ring electrodes [27]. Conductive gel based 
concentric ring electrodes offer a more scalable solution than the 
conventional gel ones. Also, they are advantageous in terms of 
noise suppression for brain activity monitoring and provide 
better source localization [28]. Dry flat concentric rings are an 
alternative option to those. A Laplacian solution can also be 
realized by laying out the pins in the form of a concentric ring. 
However, these research directions are not yet fully explored. 

D. User comfort and risks 

 Introducing spring mechanisms in dry electrode EEG 
systems as well as introducing flexible polymer electrodes was 
aimed at improving user comfort over rigid metal pins. In our 
internal evaluation on 10 users, average comfort of polymer 

electrodes was 5.83 compared to 4.17 for rigid ones with 
springs, rated on a scale of 1 (uncomfortable) to 10 
(comfortable). The results on the user comfort while wearing an 
EEG system described in [26], where different dry electrodes are 
introduced, are given in Fig. 4. They indicate higher comfort for 
both flat and pin flexible polymer electrodes, rigid metal 
electrodes. The question remains whether the comfort level is 
acceptable for an average consumer over prolonged periods of 
time. None of the existing dry electrode solutions sustained 
long-term use evaluations. In our internal experiments, having 
users wearing the latest imec’s wireless EEG headset with 
flexible polymer electrodes, spring electrode support 
mechanism, and best suited headset size, complaints about 
discomfort are often raised after wearing the headset for about 
an hour. Hence, user comfort is an important parameter to 
assess, besides electrode-skin contact properties, signal quality 
and stability over time. This evaluation must be done, 
considering also electrodes integrated within an adequate 
headset system, as the headset properties can have substantial 
impact on the comfort.  

 

Fig. 4. Usser rating of comfort level during two measurement sessions (10 
users) of around 30 minutes and across 9 electrode locations. F3 and P3 

positions in Session A have rigid Ag/AgCl electrodes and the rest are different 

version of conductive polymer electrodes with Ag/AgCl coating, either flat on 

electrode positions F7 or F7 or with pins (at the rest of the positions). 

Furthermore, many existing electrode and wearable headset 
solutions have increased risks for users. While excessive current 
leakage can easily be prevented, a risk of mechanical injuries 
still exists, due to the rigid metal pins, rigid electrode support 
structure or rigid headset constructions. Also, new materials 
used in the production of electrodes are often not tested for 
toxicity and sensitization on the skin. This is particularly the 
case with new polymer electrodes (containing carbon material) 
and after applying coating layers on the tips of the pins that may 
get in contact with damaged skin or tissue. Risk analysis and risk 
minimization steps are required before deploying dry electrodes 
in consumer products and especially before any medical use. As 
a minimum requirement before the use of any of the newly 
developed electrodes, they need to be proven to be non-toxic 
when used on humans. Toxicity and risk analysis are regular 
procedures followed in imec before applying new electrodes and 
headsets on people. 

III. EEG SENSORS AND BRAIN MONITORING SYSTEMS 

A. Active sensors 

To minimize the impact of environmental noise on the noise 
sensitive dry electrode EEG signal, the first signal amplification 
is done immediately after the electrode-skin contact. This 
concept is known as active sensing and assumes that a 
preamplifier is positioned on a printed circuit board (PCB) 
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cointegrated with the electrode itself (with minimal wire routing 
in between). Due to high input impedance and low output 
impedance, this active sensor ensures that the high impedance 
of dry electrodes does not attenuate the EEG signal and that the 
artifacts due to cable motion and power line interference are 
minimized. This is a clear advantage over passive solutions 
where artifact and interference are propagated to the signal path 
through the high impedance cabling connecting electrodes to the 
main amplifier. Although active sensors improve signal quality, 
they require more complex design of the sensor unit and the 
system itself. Active sensors need to be powered and controlled, 
resulting in more than one wire connecting them to the backend 
unit. Furthermore, they require a PCB mounted on top of the 
electrode, increasing the overall size of the sensor unit. Hence, 
miniaturization and wiring optimization are an integral part of 
active sensor system design [29]. 

B. Noise prevention 

Active sensors only partially prevent noise and artifacts that 
impact the EEG signal. Due to low signal amplitudes, additional 
noise suppression techniques must be implemented in EEG 
systems. Environmental common mode interference can be 
reduced by using the driven right leg (DRL) circuitry [30]. 
Precautions are also taken to protect the sensitive analog traces. 
They are protected from relatively high-speed clock signals by 
a careful layout, ensuring minimal interference from switching 
clock signals. To limit the impact of other environmental noise, 
active shielding [31] mechanisms are used on the cables.  

Given that most wearable brain monitoring systems use 
Bluetooth (BT) for data transmission (e.g, Cognionics, Enobio, 
NeuroSky), electronic components are typically protected from 
the radio by a careful PCB layout to minimize electromagnetic 
interferences. Due to system miniaturization in wearables, it is a 
challenge to position the radio away from the sensitive analog 
circuits. The high frequency radio signal at 2.4 GHz may appear 
in the bandwidth of EEG (up to 100 Hz) due to aliasing as 
electro-magnetic interference (EMI). The interference can be as 
large as few µVs. Considering that the EEG amplitude is also at 
a similar level, the noise becomes significant if not filtered 
properly. To address the EMI and improve the RF immunity at 
acquisition electrodes, low pass filters with a cut-off frequency 
around 1 MHz are often implemented very close to the 
electrodes, in order to filter the high frequency noise at the 
source itself. Additionally, it is necessary to improve the RF 
immunity at the bias or patient ground electrode, hence a low 
pass filter is also implemented at the bias electrode. This is 
illustrated in Fig. 5. The interference also depends on the output 
power of the radio, typically set at 0 dBm. Reducing this output 
power, in addition to the careful layout and proper grounding 
techniques, helps in reducing EMI during the analog signal 
acquisition.  

These solutions reduce the impact of environment noise, but 
other noise sources can still impact the EEG signal. Among 
those, the strongest interference is due to the artifacts caused by 
movements. They produce substantial disturbances in the gel-
based EEG recordings, even larger when dry electrodes in a 
wearable headset form factor are deployed, and in particular 
when the system is used in uncontrolled environments. 
Continuous monitoring of ETI has shown useful insights for 

assessing the quality of sensor contact [29] but also in 
compensating motion artifacts [32]. Alternatively, capturing 
electrode or system movement using accelerometers and 
gyroscopes can further assist in this process [33]. To what 
degree these auxiliary signals can help in extracting the signal of 
interest, especially when using dry electrodes, is currently an 
active research topic.  
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Fig. 5. High-level block diagram including EMI minimization: introduction of 

RC low pass filters (LPF) between channel (Ch) and reference (Ref) dry 

electrodes and active electrode (AE) integrated circuits (ICs), as well as 

between bias output from back-end readout (BE RO) IC and bias electrode. The 
high pass filter (HPF) shown in the diagram is used for ensuring AC coupling 

between AE and BE.  

C. Signal digitization 

For multi-channel EEG recordings, the interface between the 
active sensors and the backend readout must be simple and 
flexible, such that the number of connecting wires is minimized 
and that the interface can easily be scaled to support a larger 
number of channels. Conventional active sensors with analog 
outputs require many wires connected to the backend unit and 
are limited by the number of channels the backend readout can 
process. This results in a complex system when multimodal and 
multichannel recordings are required. Imec’s latest wearable 
brain monitoring systems use a digital active electrode (DAE) 
concept [34] that is illustrated in Fig. 6.  
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Fig. 6. Digital active electrode (DAE) concept block diagram. 

Each electrode is co-integrated with a low power 
application-specific integrated circuit (ASIC) equipped with a 
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built-in ADC and a digital interface. Thus, the EEG signal is pre-
amplified and digitized locally before it is transmitted to the 
backend unit.  Multiple DAEs can be connected via mixed-
signal bus to a generic microcontroller in a daisy chain or a star 
architecture. A common mode feed forward (CMFF) signal, i.e., 
a buffered output of reference electrode, is used as a common 
mode input to all the DAEs, improving the common mode 
rejection ratio (CMRR) [34]. This solution reduces both system 
complexity and cost, since an analog signal processing back-end 
readout is not required.  

D. Signal processing 

Besides filtering and resampling, other methods to process 
acquired signals are rarely implemented within wearable EEG 
(or fNIRS) systems. The data analysis is mainly done externally 
on a PC, having more operating power, dedicated tools, and 
flexibility to test and visualize output of different analysis 
methods. Having more powerful microprocessors, such as 
Cortex M4F in imec’s latest wireless EEG headsets, facilitates 
implementation of more complex signal processing algorithms 
within the system. This can include not only the extraction of 
spectral power or independent components but also advanced 
algorithms for reducing the impact of noise and artifacts in 
runtime. Only a few examples exist that perform embedded 
information extraction [35]. New dedicated applications and 
wider adoption of wearable brain monitoring (e.g., [36]) raise 
the need for efficient embedded algorithm implementations. 

IV. MULTIMODAL BRAIN SENSING 

EEG measures the biopotential signals of a large group of 
neurons, having the advantage of excellent temporal resolution 
(<1 ms). However, EEG suffers from poor spatial resolution 
because the signal is measured on the scalp, and is hence blurred 
by different conduction layers in between the scalp and the 
cortex including skull, cerebrospinal fluid, etc. The spatial 
resolution of brain activity monitoring is improved when other 
noninvasive neuroimaging techniques are used, such as positron 
emission tomography (PET), functional magnetic resonance 
imaging (fMRI) and functional near infrared spectroscopy 
(fNIRS). These techniques are used to measure hemodynamic 
responses of brain tissues, e.g. the cerebral blood flow due to 
increased neuronal activity, with a high spatial resolution (1-2 
mm). However, PET and MR scanners are bulky, require special 
shielded rooms, are extremely power hungry, and costly to 
produce and maintain. In contrast, state-of-the-art portable and 
wearable fNIRS systems [37][38] are by far less complex in 
design, have lower power consumption, and can be 
miniaturized. However. they cannot yet facilitate long-term and 
continuous fNIRS measurements. Combining both EEG and 
fNIRS [15][39][40] and potentially other modalities (e.g. 
electrical impedance tomography) provides complementary 
results to understand the brain activities by using a compact and 
low-cost solution. 

A. Functional near-infrared spectroscopy (fNIRS) 

fNIRS measurement is based on the modulation of near 

infrared light in the spectrum of 700-900 nm. Pulsed light trains 

from a two-colour LED is shined into the tissue (Fig. 7), where 

the light is modulated based on the hemodynamic or blood-

oxygen-level dependent response. The light travelling through 

the tissue is then detected by an optical receiver and is further 

converted into an output pulsed current. 

735nm 
850nm

EEG

LED

Photodiode  

Fig. 7. Illustration of a multimodal EEG and fNIRS recording, including the 

LED pulse train and the light pulses captured by the photodiode. 

The optical receiver can be implemented with a photodiode 

(PD), which has the advantage of a small size and a low bias 

voltage (<5V), but the limited sensitivity of a PD requires a few 

mW of power consumed from the LED even if it is duty cycled. 

An avalanche photodiode (APD) has a higher light sensitivity, 

but an APD requires a bias voltage between 50-100 V, which is 

a challenge for low power wearable devices. Recently 

introduced silicon-photomultiplier (SiPM), i.e., a pixelated 

based APD array, has shown to provide high light sensitivity 

[41], relaxes the power of the LED driver, and is thus a 

promising solution for power-efficient fNIRS measurement. 

Furthermore, the SiPM can detect the light pulses travelling 

through a deeper or a wider region of the brain tissue, allowing 

for a reduced number of transmitters and receivers to cover the 

whole scalp area. This reduces the power of the system 

significantly, even though the SiPM requires a bias voltage of 

30-35 V. When considering the significant power saved in the 

LEDs (reduction from 10-50 mA to 10-100 µA), an SiPM-

based optical sensing system still provides better overall power 

efficiency than a PD-based system [42]. 

The readout circuit interfaced with a PD or an SIPM can be 

a transimpedance amplifier (TIA) or an active integrator (INT) 

(Fig. 8). The output voltage is sampled by an ADC. The fNIRS 

representing hemodynamic responses is usually sampled below 

16Hz, however, either the analog outputs or the fNIRS pulses 

are often oversampled/averaged for improved resolution. 
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Fig. 8. fNIRS readout circuits based on a TIA (above) or an integrator (below). 

Cf represents feedback integration capacitor, Is is the current from PD/SiPM, 



1558-1748 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2018.2844174, IEEE Sensors
Journal

and Vo,TIA and Vo,INT are the output voltage of TIA and integrator, respectively. 

Waveforms at the major circuit nodes are given on the right. 

A major challenge for fNIRS sensing is the large dynamic 

range of at least 80 dB required due to the ratio between the 

large DC signal (i.e. ambient light and static fNIRS signals) and 

the small AC signal (i.e. dynamic fNIRS signals). State-of-the-

art fNIRS acquisition circuits employ a (pulsed) compensation 

current to improve dynamic range, but the current is often set 

manually [40][42]. A digitally-assisted feedback loop, 

developed at imec [15] (Fig. 9), runs in the background and 

provides the pulsed compensation current automatically. This 

loop, operating in the digital domain, is more power and area 

efficient, while the full range fNIRS input signal can be 

reconstructed by combining the ADC outputs and the amount 

of compensation current. 
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Fig. 9. Block diagram of a digitally-assisted feedback loop for improved 

dynamic range. 

The fNIRS system described above can detect the heart rate 

with a single-wavelength LED by measuring the blood volume 

variability (Fig. 10). To further measure the hemodynamic 

responses, such as SpO2 for blood oxygen level estimation, 

two-wavelength LEDs are required. Fig. 11 shows the relative 

SpO2 change of the subject when holding breathing (from 5 s to 

46 s) and restarting breathing (after 46s). The measurement was 

done on the forehead with a SiPM and a two-wavelength LED. 

The trend of SpO2 change is in a good agreement with the 

subject’s breathing pattern. A more comprehensive 3D brain 

imaging can be obtained by placing multiple optodes (LED and 

SiPM pairs) over the scalp. 

 

 

Fig. 10. The fNIRS currents measured from the subject’s forehead when a 

single LED (850 nm) is used. 

 

Fig. 11. Relative SpO2 derived from a measurement with two wavelength (735 

nm, 850 nm) fNIRS recording. 

B. Electrical impedance tomography (EIT) 

 Compared to the fMRI and fNIRS, the EIT of the brain can 
provide fast impedance imaging (<1 ms) to assess the status 
during or after certain cognitive dysfunction, such as stroke or 
epileptic seizure, in a low-cost manner. A big challenge of non-
invasive brain EIT is the high-impedance introduced by the 
skull, which attenuates the current going through intracranial 
tissue. However, successful EIT with scalp electrodes has been 
realized with advanced signal processing and modeling 
techniques [43]. 

 The EIT sequentially measures the bio-impedance between 
multiple electrode pairs. Thus, the brain impedance network is 
obtained in a time-multiplexed manner. The overall frame rate 
of n-electrode EIT should be more than 1 kHz to detect neural 
activities of the brain. Bio-impedance measurement is based on 
current-to-voltage conversion (Fig. 12), where a pair of 
electrodes generates excitation current and another pair of 
electrodes measures the voltage across the bio-impedance. Such 
a 4-electrode configuration can mitigate the error introduced by 
the ETI. This helps to relax the dynamic range requirement of 
the readout circuit, and reduces noise. However, to sense the 
small bio-impedance change superimposed on the large skull 
impedance, the readout circuit needs to provide a large dynamic 
range (estimated to be more than 100 dB) with a high sensitivity 
(estimated to be less than 10 mΩ). 

 Tissue Re

RiCm

IA

 

Fig. 12. Multi-electrode EIT setup on a participant’s head and a 4-electrode-
based bio-impedance sensing unit including the tissue model. Cm is membrane 

capacitance, Ri is intracellular resistance, and Re is extracellular resistance. 

  Imec’s solution to improve sensitivity is to reduce the 
system noise. As bio-impedance variation spans from sub-Hz to 
a few kHz, the flicker noise or 1/f noise of the system becomes 
the bottleneck for sensitivity. Conventional EIT readout circuits 
only focus on noise reduction of the sensing amplifier, while the 

V
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1/f noise of the excitation current source can be a dominant noise 
source. In order to solve this issue, a dynamic element matching 
(DEM) technique is applied to the excitation current generator 
to mitigate its 1/f noise by upmodulating it to a higher frequency 
(Fig. 13) [15]. Measurement tests demonstrated the benefits of 
such a solution, however its practical evaluation on users still 
needs to be explored.  

IA
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Fig. 13. Excitation current source with reduced 1/f noise. Block diagram of bio-

impedance measurement (top), where fBioZ is the measurement frequency of 

BioZ. Transistor level low-noise excitation current source (bottom left), where 
Iout is the output sourcing current of the CG, fDEM is the frequency of dynamic 

element matching.  Illustration of the current source noise versus frequency 

(bottom right). 

C. Multimodal sensor integration and measurements 

Fig. 14 shows a conceptual sketch of a module integrating 

EEG, fNIRS and EIT sensors and a readout ASIC. Each module 

contains two electrodes, one for EEG (and EIT) electrical 

potential signal sensing and the other one for EIT current 

sinking/sourcing. A dual-wavelength LED and SiPM (or PD) 

are placed on electrode sides. Both optodes have optical 

isolation to minimize interference and reduce the impact of 

ambient light. All these sensors are connected to the ASIC 

mounted on top of the EEG electrode. 

 

Fig. 14. Illustration of a multimodal EEG, fNIRS and EIT sensor module. 

The proposed system also supports simultaneous and multi-

channel EEG, fNIRS and EIT measurement (Fig. 15). Bipolar 

EEG or EIT requires a total of N+1 modules to realize N-

channel measurement, where one module is selected as the 

reference. Thus, EEG or EIT is acquired between modules. 

Unipolar fNIRS requires N modules for N channel, as the LED 

and SiPM are both located on the same module. 

During the multimodal measurement, EEG is continuously 

measured at all sensor modules, while fNIRS is measured in a 

time-multiplexing manner. The LED of each module is enabled 

sequentially, and multiple SiPMs around one LED detect the 

light simultaneously. This inter-module sensing increases the 

number of fNIRS channel, having shared optodes, leading to a 

compact system. EIT is also measured in a time-multiplexing 

manner. A pair of modules is enabled each time and they 

provide activation of sinking and sourcing currents, 

respectively. The bio-impedance signal between these two 

modules is measured. Similar measurement can be repeated 

among different module pairs for a full head EIT. Note that the 

EEG and EIT can share the same electrode for voltage sensing 

because they have different bandwidth. 

 

 

Fig. 15. Illustration of a multichannel EEG, fNIRS and EIT measurement. 

V. CONCLUSIONS 

The latest developments in the area of noninvasive and 
wearable brain monitoring are discussed in this paper. The focus 
is on the dry EEG electrode designs and brain monitoring system 
aspects required to provide reliable capturing of brain state while 
allowing for a greater comfort to the user. Dry electrode EEG 
solution challenges in terms of electrode and sensors design, 
noise minimization and signal digitization aspects are presented. 
Additionally, new directions in terms of multi-modal brain 
monitoring are introduced, including several system solutions 
on how to implement miniaturized, low power functional near-
infrared spectroscopy and electrical impedance tomography. We 
illustrate how these three sensing modalities can be integrated in 
a single system and the benefits they bring. Addressing the 
challenges within the multi-modal brain monitoring solutions is 
the essential ingredient for the next generation of wearable brain 
monitoring devices. 
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